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TURN-ARCUND LOSS FOR OCEANIC SOUND CN A BOTTOM SLOPE (U)

ABSTRACT

1% “For oceanic sound reflected from a region of bottom slope the turn-round
loss equals the sum of the bottom losses, and can be quite low if the total
deflection in horizontal angle is low. Simple formulae are derived, and the
effects of the slope being finite are discussed.<




1. INTRODUCTION

2. The problem of oceanic sound propagating over a sloping bottom, near a
coastline or sea-mount, has been treated by a large number of authors. Seversal
of these have considered the full three~dimensional problem, where a component
of slope across the track leads to a refraction or curvature of the horizontal
projection cf the ray path. For isovelocity water with a constant small bottom
slope this projection aprrcximates to a hyperbola, demonstrated for example in
the early papers by Xuznetsor (Ref 1) and by Weston (Ref 2). The latter paper
provides the illustration in Figure 1. The ray suffers a series of bottom
bounces and is gradually turned round, in effect it undergces specular reflec-
tion at the coastline.

3. There is a turn-around loss associated with the bottom bounces, (eg Ref 3),

but this has received much less attentior than the geometrical gquestions., The
present paper sets out to make some small contributions to the problem of the
loss magnitude and its main dependences.

2. PROPAGATION DIRECTLY UP-SLOPE

k. In this and the following section we concentrate on isovelocity water
with very small constant bottom slope a, with source and receiver distant, and
use ray approximastions. Figure 2 shows ray projections into a plane orthogonal
to the contour lines and is fully discussed later on. If we go far enough into
the deep-water side on the left, the magnitude of the resolved ray grazing
angle y will become very small, eventually less than a. In the turning-round
process y is effectively changed through an angle w, from zero back to zero.
Each bottom bounce contributes 2a, so that the number of bounces is

n = wn/2a. (1)

If B is bottom loss in dB and B is the average value, the total turn-round loss
following Harrison (Ref 3) is

L = nB = nB/2a. (2)
5. These formulae apply to any direction of propagation up the slope, but
we novw particularise to the direct line at right angles to the contours. Here
y is equal to ¢, the magnitude of the ordinary grazing angle. In general B
may be found by a simple integration, and two examples will be given.
6. If bottom loss is represented by Bm sin ¢ the average B is 2Bm/n and so
L = Bm/a. (3)

Similarly if bottom loss varies as ¢ to maximum Bm, the average I is Bm/2 and

L = me/ha. (L)

In equations (3) and (4) the answers are numerically close, and the dependencies
on Bm and a of the character expected. High turn-round losses are normally

predicted. If we take a low-frequency value of Bm as small as 10 4B, with o
as large as 0.2, equation (3) still predicts a loss L as high as S5C dB.



3. PROPAGATION OBLIQUELY UP-SLCPE

7. We will again present two examples, starting with a bottom loss Bm sin 9.

Since vy and ¢ are no longer identical the averaging or integration procedure
is a little more complicated, and we need to relate y and ¢. From straight-
forward trigonometry

tan y = sin ¢/sin 8. {5)

In addition we note that the bottom bounces cannot change the value of the total
angle between the ray path and the contour. This remains constant, so that

2
sin2¢ + sinze = sin‘eo. (6)

The angle eo is shown in figure 1, 290 is the total horizontal deflection.
Combining (5) and (6),
sin ¢ = sin 90 sin v. (7)

S. Turn-around loss may now be calculated, starting as before from
equation (2).

/2 B sin ¢ dy /2 B sin 8 sin vy dy
L = m - m 0
a a
o o
= (Bm sin eo)/a. (8)

The important point here is the factor sin 8,» nev relative to equation (3).
For a grazing incidence on the coastline, eo small, the value of L can be very

small. For normal incidence equetion (8) reduces to equation (3). Numerically
let us take a typical value of sin eo as 0,5, assume Bm 10 @B and a 0.2 as

above, when we can predict L as 25 dB. foertner (Ref L) implies that typical
losses may be of order 20-25 4B, although there are many additional factors in
her work.

9. The writer has already presented the second example, in Ref 2. The
bottom is modelled as a perfect fluid with total internal reflection and
negligible losses up to a critical angle ¢c’ and with heavy losses for steeper

angles. Note that the steepest ray angle occurs at the vertex of the hyperbola,
where, eg from equation (6), ¢ = eo, although of course y = v/2. Thus if eo

is less than ¢c the turn-round loss L will be negligible, but if eo is greater
than 4, the loss L can be quite large. It may be argued that this example is

less realistic than the first. But both examples combine to show that low

values of L arise with low values of 8,s because the ray manages its turn-around
without ever becoming steep.




L. EFFECTS OF FINITE SLOPE

10. The above description omits many points of practical importance, and we
concentrate here on various finite slope effects. There is also the possi-
bility of layering and especially of ducting, although with a small this
disturbs the above formulae by a surprisingly small amount. The sound coming
back from the bottom may do so afier penetrating quite deeply inside it, and
some consequences for slope propagation are discussed in Ref 5. The slope may
be variable and the bottom quite uneven. A computer treatment may then be
appropriate. Attention is also drawn to an alternative approach in which the
slope returns are modelled by a scattering rather than a specular reflection
process, this may often be appropriate if source or receiver are at short range.

11.  With finite slope ‘et us note as a first point that care is needed with
the geometry. For example an outgoing ray after its last bottom bounce may be
either upgoing or downgoing, a is not small in comparison with the ray angles,
and one must be wary in applying the concepts of ray invariance or characteristic
time.

12. Second, with finite slope there will be a finite number of reflectionms,
and an integral may not give a good approximation for the summed bottom losses.
In the extreme case with a = 7/2 we have a smooth vertical precipice. We might
expect the turn-round loss to be low, and in fact for ¢ = 0, assuming the sine
dependence of bottom loss we have

L = B(eo) = B sin e, (9)

This compares with an equation (8) prediction of (QBm sin eo)/n. For such an

extreme case the error factor of 2/m may be considered reasonable. The agree-
ment with equation (8) is improved if we allow incidence with finite values of
¢ and v.

13. There is also rapid improvement as a is reduced. Thus for a = n/Lk, ¢ = 0
in deep water, sine dependence and propeagation directly upslope the actual
turn-round less is 1.41 B . The equation (8) prediction is 1.27 B -

14, Third, after turn around there may be an error in the final or deep-water
value of ¢. Let us consider the different possibilities, some of which are
shown in Figure 2. Note that it is often helpful to use an alternative presen-
tation in which the various mirror images of the wedge join at the vertex, and
the ray path is represented by a single straight line.

a. Condition for initial and final deep-water values of y (and ¢) to be
zero. First and last bounces will be at bottom. Middle bounce will be

orthogonal to one of the boundaries., =/2a must be integral and equal to
number of bottom bounces n. Inward and outward paths will be coincident
in the y plane. Figure 2(a) is an example.

b. Condition for initial and final values of y to be the same: assuming
first and last bounces are at the same boundary. Middle bounce orthogonal
to one of the boundaries so that initial y and a are related, but n/2a not
necessarily integral. Inward and outward paths coincident in the y plane.

¢. Condition for initial and final values of y to be the same: assuming
first and last bounces are at different boundaries. 7/2a integral and
equal to n. Figure 2(b) is an example, which happens to be symmetrical.
Like figure 2(c) the paths can go with or against the arrows. The result




here shows that the "retrodirective" property as in a radar reflector is
not restricted to the right angle case g = 7/2, note also that three-
dimensional forms may be specified with four (or three) reflecting walls.
The condition here is related to the necessary and sufficient condition
for the exact or perfect closure of the wedge and its ring of images,

ie that n/a be integral. The extra cases with m/a odd correspond generally
to initial and final values of y which are symmetrical with respect %o the
surface and bottom slopes. For perfectly rigid or perfectly compliant
boundaries the m/a integral condition leads to a simplification in the
wave description of the field since there is no extra term due to diff-
raction at the apex (Ref 6).

d. General case: initial and final values of different. The
difference or error in y can be up to a, though in general the errer in
¢ will be less than in y. Figure 2(c) is an example, chosen with y
initially zero.

15. To see the significance of these angle errors we must move a stage nearer
reality and consider coupling with a duct. The steepest angles in *he main
sound channel are of order 0,25 radians, so that an error of this magnitude
will be liable to reduce the energy coupling into the duct. (For a short range
source the duct coupling might sometimes be increased.) Slopes of this value
are certainly not uncommon. If there is a depressed socund channel present, as
in much of the North-East Atlantic, the outgoing sound will normally couple
into it rather than into the main channel. The steepest angles in a depressed
channel are typically arcund 0.1 radians, corresponding to a very common value
of slope. The resulting finite-slope effects will be smeared out ty varia-
tions in the initial value of ¢, in A and in a; but it seems there should
often be an overall loss.

16. Fourth, the above errors in the final value of ¢ will be accomparied by
errors in the final value of 8. But these will be of second order and of
dubious import.

CONCLUSTONS
17. The simple equation (8) is commended as giving the flavour of the turn-

round loss, its magnitude and dependences. With finite slopes there may be
extra effects, especially when the coupling to a duct is spoilt.
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FIG 1 HORIZONTAL PROJECTION OF RAY PATH OVER
A GENTLY SLOPING BOTTOM, FROM REF 2
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EXAMPLES OF RAY PATHS IN THE ¥ PLANE,
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